New findings on the Brazil Current structure at its formation region

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3}

¹University of São Paulo ²University of Massachusetts at Dartmouth ³Massachusetts Institute of Technology

March 17, 2011

General Review: Mean Circulation

General Review: Synoptic Circulation

Our Recent Results

Ongoing and Future Work

 $\mathsf{Rafael} \; \mathsf{Soutelino}^{1,2} \; \mathsf{Ilson} \; \mathsf{da} \; \mathsf{Silveira}^1 \; \mathsf{Avijit} \; \mathsf{Gangopadhyay}^2 \; \mathsf{Juliana} \; \mathsf{Miranda}^{1,3} \; \; \mathsf{New} \; \mathsf{findings} \; \mathsf{on} \; \mathsf{the} \; \mathsf{Brazil} \; \mathsf{Current} \; \mathsf{structure} \; \mathsf{at} \; \mathsf{its} \; \mathsf{formation} \; \mathsf{region} \; \; \mathsf{2} \; \mathsf{formation} \; \mathsf{formation} \; \mathsf{region} \; \mathsf{2} \; \mathsf{formation} \; \mathsf{f$

General Review: Mean Circulation

General Review: Synoptic Circulation

Our Recent Results

Ongoing and Future Work

Presenting the study area

Gulf Stream System vs Brazil Current System

Rafael Soutelino 1,2 Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 4

Gulf Stream System vs Brazil Current System

Tomczak - Regional Oceanography

Brazil Current System large scale review

Near-surface

Pycnocline

Intermediate Level

Silveira et al (2000); Stramma & Englang (1999)

Brazil Current System large scale review

According to previous research

Rafael Soutelino 1,2 llson da Silveira 1 Avijit Gangopadhyay 2 Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 7

General Review: Mean Circulation

General Review: Synoptic Circulation

Our Recent Results

Ongoing and Future Work

Broad impacts

Motivation to study synoptic circulation at BC origin

- $\checkmark~$ Verify which typical mesoscale features occurs;
- ✓ Accurately represent real dynamics in numerical simulations, important to process understanding, nowcasting and forecasting;
- Annual and interannual variability meridional overturning circulation;
- ✓ Shelf-slope interactions and exchanges;
- ✓ Sedimentological implications of deep currents;
- ✓ Biological implications of eddy activity.

Rafael Soutelino 1,2 llson da Silveira 1 Avijit Gangopadhyay 2 Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 9

Synoptic Circulation - SW Atlantic

According to previous research

Synoptic Circulation - E Brazil review

Mapped from ETOPO 2'

Rafael Soutelino 1,2 llson da Silveira 1 Avijit Gangopadhyay 2 Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 11

Synoptic Circulation - E Brazil review

Stramma et al. (1990)

Synoptic Circulation - E Brazil review

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 13

Synoptic Circulation - E Brazil review

Dengler et al. (2004)

General Review: Mean Circulation

General Review: Synoptic Circulation

Our Recent Results

Ongoing and Future Work

Synoptic Circulation - E Brazil - recent results

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 16

Synoptic Circulation - E Brazil - recent results

Soutelino et al. (2011)

Synoptic Circulation - E Brazil - recent results

Soutelino et al. (2011)

Synoptic Circulation - E Brazil review

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 19

General Review: Mean Circulation

General Review: Synoptic Circulation

Our Recent Results

Ongoing and Future Work

Possible genesis mechanisms for the anticyclones

- Local dynamics:
 - 1. Topography
 - 2. BC-NBUC vertical shear-based instabilities
- Remote dynamics:
 - $1.\ \mbox{Impinging WNW}$ propagating Agulhas Rings

Rafael Soutelino 1,2 llson da Silveira 1 Avijit Gangopadhyay 2 Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 21

Strategies to test the hypothesis

FORMS Technique: Gangopadhyay et al. (1997)

- Identify the synoptic circulation features;
- Build parametric representations of the features (Feature Model - FM);
- ✓ Combine obtained FMs in idealized regional simulations.

Present work FORMS approach: ROMS FM-based semi-idealized numerical process studies to identify the role of each feature or the combination of them in the eddy generation in the region.

Realistic SEC

SEC-FM Formulation

$$\mathcal{U}(y,z) = \boldsymbol{u}_0(z) \cdot exp\left[-\frac{(y-y_0(z))^2}{2\delta^2}\right]$$

$$u_0(z) = (u_{core} - u_{surf}) \cdot exp\left[-\frac{(z - z_{core})^2}{2\delta_s^2}\right] + u_{surf}, \quad @ z_{core} < z < 0$$

$$u_0(z) = (u_{core} - u_{bot}) \cdot exp\left[-\frac{(z - z_{core})^2}{2\delta_b^2}\right] + u_{bot}, \quad @ z_{bot} < z < z_{core}$$

$$y_0(z) = y_{core}, \quad @ \quad z_{core} < z < 0$$

$$y_0(z) = 2x10^{-1}z + 6x10^2$$
, @ $z_{bot} < z < z_{core}$

Realistic SEC vs SEC-FM

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 25

Realistic NBUC

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 26

NBUC-FM Formulation

$$\mathcal{V}(x, y, z) = \mathbf{v}(y, z).exp\left[-\frac{(x - x_{core})^2}{2\delta^2}\right]$$

$$v(y,z) = v_0(y) . exp\left[-\frac{(z-z_{core}(y))^2}{2\delta_s^2}\right], \quad @ z_{core} < z < 0$$

$$v(y,z) = v_0(y).exp\left[-\frac{(z - z_{core}(y))^2}{2\delta_b^2}\right], \quad @ z_{bot} < z < z_{core}$$

 $v_0(y) = 8.2x10^{-5}y + 7x10^{-2}$

$$z_{core}(y) = 0.2y - 3.5 \times 10^2$$

Realistic NBUC vs NBUC-FM

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 28

Realistic NBUC vs NBUC-FM

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 29

Strategies to test the hypothesis

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 30

SEC-FM simple adjustment

Rafael Soutelino 1,2 llson da Silveira 1 Avijit Gangopadhyay 2 Juliana Miranda 1,3 New findings on the Brazil Current structure at its formation region 31

NBUC-FM simple adjustment

Rafael Soutelino^{1,2} Ilson da Silveira¹ Avijit Gangopadhyay² Juliana Miranda^{1,3} New findings on the Brazil Current structure at its formation region 32

Next steps

These next steps aim to obtain the yet not generated anticyclones through these local forcing mechanisms.

- Combine SEC and NBUC FMs with flat bottom;
- Combine SEC and NBUC FMs with real topography;
- Investigate the solution sensibility to variations in kinematic FM parameters.

Future experiments may include deep layer southward flow.

Thank you!

Obrigado!